Rhizobium leguminosarum exoB mutants are deficient in the synthesis of UDP-glucose 4'-epimerase.
نویسندگان
چکیده
Rhizobium leguminosarum bv. viciae Exo- mutant strains RBL5523,exo7::Tn5,RBL5523,exo8::Tn5 and RBL5523,exo52::Tn5 are affected in nodulation and in the syntheses of lipopolysaccharide, capsular polysaccharide, and exocellular polysaccharide. These mutants were complemented for nodulation and for the syntheses of these polysaccharides by plasmid pMP2603. The gene in which these mutants are defective is functionally homologous to the exoB gene of Rhizobium meliloti. The repeating unit of the residual amounts of EPS still made by the exoB mutants of R. leguminosarum bv. viciae lacks galactose and the substituents attached to it. The R. leguminosarum bv. viciae and R. meliloti exoB mutants fail to synthesize active UDP-glucose 4'-epimerase.
منابع مشابه
Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra.
Analysis of two exopolysaccharide-deficient mutants of Rhizobium leguminosarum, RBL5808 and RBL5812, revealed independent Tn5 transposon integrations in a single gene, designated exo5. As judged from structural and functional homology, this gene encodes a UDP-glucose dehydrogenase responsible for the oxidation of UDP-glucose to UDP-glucuronic acid. A mutation in exo5 affects all glucuronic acid...
متن کاملSurface polysaccharide mutants of Rhizobium sp. (Acacia) strain GRH2: major requirement of lipopolysaccharide for successful invasion of Acacia nodules and host range determination.
Two transposon Tn5-induced mutants of wild-type broad-host-range Rhizobium sp. GRH2 were isolated and found to harbour different alterations in surface polysaccharides. These mutants, designated GRH2-14 and GRH2-50, induced a few, empty nodules on Acacia and lost the ability to nodulate most host herbaceous legumes. Whereas mutant GRH2-14 produces an acidic exopolysaccharide (EPS) similar to th...
متن کاملBiosynthesis of UDP-xylose and UDP-arabinose in Sinorhizobium meliloti 1021: first characterization of a bacterial UDP-xylose synthase, and UDP-xylose 4-epimerase
Sinorhizobium meliloti is a soil bacterium that fixes nitrogen after being established inside nodules that can form on the roots of several legumes, including Medicago truncatula. A mutation in an S. meliloti gene (lpsB) required for lipopolysaccharide synthesis has been reported to result in defective nodulation and an increase in the synthesis of a xylose-containing glycan. Glycans containing...
متن کاملNovel rkp gene clusters of Sinorhizobium meliloti involved in capsular polysaccharide production and invasion of the symbiotic nodule: the rkpK gene encodes a UDP-glucose dehydrogenase.
The production of exopolysaccharide (EPS) was shown to be required for the infection process by rhizobia that induce the formation of indeterminate nodules on the roots of leguminous host plants. In Sinorhizobium meliloti (also known as Rhizobium meliloti) Rm41, a capsular polysaccharide (KPS) analogous to the group II K antigens of Escherichia coli can replace EPS during symbiotic nodule devel...
متن کاملAll nod genes of Rhizobium meliloti are involved in alfalfa nodulation by exo mutants.
Nodulation of alfalfa by exoB mutants of Rhizobium meliloti occurred without root hair curling or infection thread formation. nod exoB double mutants had the same nodulation deficiency as single nod mutants. Therefore, all the known nod genes are involved in nodule induction by exoB mutants, which apparently occurs via intercellular invasion.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 265 34 شماره
صفحات -
تاریخ انتشار 1990